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Sand bars in tidal channels.
Part 1. Free bars
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We investigate the basic mechanism whereby bars form in tidal channels or estuaries.
The channel is assumed to be long enough to allow neglect of the effects of end
conditions on the process of bar formation. In this respect, the object of the present
analysis differs from that of Schuttelaars & de Swart (1999) who considered bars
of length scaling with the finite length of the tidal channel. The channel bottom is
assumed to be cohesionless and consisting of uniform sediments. Bars are shown to
arise from a mechanism of instability of the erodible bed subject to the propagation of
a tidal wave. Sediment is assumed to be transported both as bedload and as suspended
load. A fully three-dimensional model is employed both for the hydrodynamics and
for sediment transport. At the leading order of approximation considered, the effects
of channel convergence, local inertia and Coriolis forces on bar instability are shown
to be negligible. Unlike fluvial free bars, in the absence of mean currents tidal free
bars are found to be non-migrating features (in the mean). Instability arises for large
enough values of the mean width to depth ratio of the channel, for given mean values
of the Shields parameter and of the relative channel roughness. The role of suspended
load is such as to stabilize bars in the large-wavenumber range and destabilize them
for small wavenumbers. Hence, for large values of the mean Shields stress, it turns
out that the first critical mode (the alternate bar mode) is characterized by a very
small value of the critical width to depth ratio. Furthermore, the order-m mode being
characterized by a critical value of the width to depth ratio equal to m times the
critical value for the first mode, it follows that for large values of the mean Shields
stress several unstable modes are simultaneously excited for relatively low values of
the aspect ratio. This suggests that the actual bar pattern observed in nature may
arise from an interesting nonlinear competition among different unstable modes.

1. Introduction
Bars are sediment waves with wavelengths scaling with channel width, which form

both in fine and in coarse sediments. The subject of river bars has been widely
investigated in the last decade (see Seminara 1995 for a recent review) as their
formation is associated with several important fluvial processes, like river meandering
and braiding.

Little attention has been devoted so far to the analogous problem concerning the
formation of bars in tidal channels. The interest of this problem, which is the subject
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Figure 1. The Venice Lagoon.

of the present investigation, is both practical and conceptual. Indeed the original
motivation for the present work arose in the context of a general investigation on
the basic mechanisms which control the morphologic evolution of Venice Lagoon,
which consists of interconnected networks of tidal channels, each network originating
at one of the three lagoon inlets (figure 1). Shallow flats are adjacent to the channels,
some of them being normally submerged (except during exceptionally low tides) while
others normally emerge (except during exceptionally high tides). Geomorphological
studies (Barwis 1978) have shown that similarities exist between the geometrical
characteristics of tidal networks and those known to be typical of river basins. Tidal
channels are typically meandering with meander wavelengths ranging about 6–12
channel widths and meander radii of the order of 1.5–4 channels widths (but see § 2
of Part 2 for more detailed observations). Similar values are typical of rivers. On the
other hand, (Solari et al. 2001) while the fate of river meanders is usually ‘meander
cutoff’, i.e. fluvial meanders do not generally reach an equilibrium configuration,
in the tidal case meanders appear to be more stable. In particular the meandering
configuration of the Venice tidal channels has not exhibited significant variations in
the period 1930–1970.

Neither the above similarities nor the distinctive features of tidal meanders can be
given an obvious mechanistic interpretation. In order to achieve some understanding
it is first necessary to investigate the major unit process controlling the morphody-



Sand bars in tidal channels. Part 1 51

–9

0

0 580

1

–11
0 460

0

–27
0 180

(a) (c)

(b)

Figure 2. Typical channel cross-sections of Venice Lagoon: (a) Perognola channel (basin of
Chioggia); (b) Treporti channel (basin of Lido); (c) S. Nicolò channel (basin of Lido). Dashed lines,
1970 cross-section; solid lines, 1990 cross-section.

namics of tidal channels, namely the formation of tidal bars, i.e. the development of
deformations of the undisturbed uniform bottom topography which may arise either
as a ‘free’ response, through an instability of the basic uniform flow topography, or as
a ‘forced’ response to some forcing mechanism like channel curvature. The fact that
both mechanisms do indeed operate in the context of tidal channels emerges from a
glance at figure 2(a–c) where three typical channel cross-sections in Venice Lagoon
display the presence of an alternate (free) bar, a central (free) bar and a point (forced)
bar, respectively. Free bars are investigated in the present paper, while forced bars
are analysed in Part 2 (Solari et al. 2001).

A description of the morphology of estuarine bar forms can be found in the
sedimentological literature. In a recent review paper Dalrymple & Rhodes (1995)
propose classifying estuarine bars into ‘repetitive barforms’ (i.e. alternate, point and
braid bars occurring in tidal channels and creeks of estuaries), ‘elongate tidal bars’
(which are features characteristic of the outer part of macrotidal estuaries but are
also observed at the mouth of estuaries with smaller tidal ranges) and ‘delta like
bodies’ (isolated features typically forming where a channel widens considerably).
Our present concern is with the first class of bars and more precisely with the
formation of alternate ‘free’ bars in straight tidal channels.

We will deliberately ignore several complicating features of the real problem. In
particular we will ignore the possible role of interactions between the channel and the
adjacent tidal flats along with the effects of bank erodibility. We will also ignore any
source of flow motion except for tide propagation. In particular, flows due to density
currents, river currents and wave action will be taken to play no role. The channel
length and the spatial scale of its width variations are assumed to be much larger than
a typical bar wavelength. Hence the formation of bars may be investigated assuming
that, at the leading order of approximation, the basic state, i.e. flow, bed topography
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Figure 3. Sketch of the channel and notation.

and sediment transport associated with tide propagation in the undisturbed channel,
is spatially uniform and time periodic. The stability of flow–bed topography in a long
straight channel with erodible bed and non-erodible banks subject to the propagation
of a tidal wave provides the simplest, yet basic, problem, to be investigated.

The stability analysis describing the formation of tidal bars exhibits two main
novel features compared to the fluvial case investigated by Colombini, Seminara &
Tubino (1987): the basic flow is time periodic and the dominant form of sediment
transport is typically transport in suspension rather than bedload transport. As in
many other fields of hydrodynamic stability the time-periodic character of the basic
flow will be seen to be readily accomodated in the theoretical approach and leads to
a Floquet-type solution. Modelling transport in suspension will require the solution
of a convection–diffusion equation coupled to the flow equations. As a result, unlike
in the steady fluvial case (Colombini et al. 1987), a three-dimensional model will be
employed.

The model will be formulated in the next section. In § 3 we summarize the basic
solution for both the flow and concentration fields. In § 4 we formulate and solve the
problem of linear stability of the basic tidal solution with respect to perturbations of
the bar type. Results on the formative conditions of tidal bars are given in § 5 along
with some discussion and concluding remarks.

2. Formulation of the problem
We consider a straight long channel connected at some initial cross-section with a

tidal sea. The channel is assumed to have a rectangular cross-section, with constant
width 2B; hence, we neglect the slow spatial variation of channel width associated
with channel convergence, its spatial scale being much larger than a typical bar
wavelength. The banks of the channel are assumed to be non-erodible, while the bed
is cohesionless, the sediment being uniform and the grain diameter d∗s small enough
for particles to be suspended by the turbulence generated by the propagation of the
tidal wave throughout most of the tidal cycle. A star denotes a dimensional quantity
subsequently made dimensionless.

Let us refer the flow field to a Cartesian coordinate system (x∗, y∗, z∗) with z∗
vertical, x∗ longitudinal and y∗ transverse (see figure 3). Furthermore let a0 be a scale
for the amplitude of free-surface oscillations about the mean water level defined by
the elevation H∗0 and denote by D∗0 a reference flow depth. We assume that, as it is
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typical of many tidal environments, we can write

ε =
a0

D∗0
� 1, β =

B

D∗0
� 1. (2.1a, b)

Typical values of ε in tidal channels of Venice Lagoon vary widely, ranging from values
around 0.05 typical of the deeper channels up to values of order one characteristic of
very shallow channels. Tidal channels are somewhat narrower than fluvial channels,
exhibiting values of β which typically do not exceed 10 (see also figure 3 of Part 2).

We then make the relevant physical quantities dimensionless as follows:

(x∗, y∗) = B(x, y), (z∗, H∗, D∗) = D∗0(z, H, D), (2.2a, b)

(U∗, V ∗,W ∗) = V0

(
U,V ,

W

β

)
, P ∗ = %V 2

0 P , (2.2c, d )

t = ωt∗, (ν∗T , ψ
∗) = V0D

∗
0

√
Cf0(νT , ψ), (2.2e, f )

having employed the following notation (see also figure 3): H∗, local free-surface
elevation; D∗, local flow depth; (U∗, V ∗,W ∗), longitudinal, transverse and vertical
components of the mean local velocity; P ∗, mean pressure; t∗, time; ν∗T , eddy viscosity;
ψ∗, eddy diffusivity of suspended particles; %, density of water; V0, characteristic flow
speed; ω, angular frequency of the tide; Cf0, reference friction coefficient. Typical
values of the reference speed V ∗0 range from about 0.5 to 1 m s−1. The reference
friction coefficient Cf0 attains typical values about (2–5)×10−3.

Using the above dimensionless variables and a Boussinesq closure, the Reynolds
equations are

LU = −∂P
∂x

+ β
√
Cf0

∂

∂z

[
νT
∂U

∂z

]
, (2.3)

LV = −∂P
∂y

+ β
√
Cf0

∂

∂z

[
νT
∂V

∂z

]
, (2.4)

0 = −∂P
∂z
− 1

F2
, (2.5)

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0, (2.6)

with L the following differential operator:

L ≡ σ0

∂

∂t
+U

∂

∂x
+ V

∂

∂y
+W

∂

∂z
. (2.7)

The dimensionless parameters σ0 and F2 are

σ0 =
ωB

V0

, F2 =
V 2

0

gD∗0
, (2.8a, b)

where g is acceleration due to gravity.
Note that in (2.3)–(2.4) we have retained only the dominant components of the

Reynolds stress tensor in the central region of the flow field (which excludes the side-
wall boundary layers) where the appropriate lateral scale is channel width. Equation
(2.5) simply states, in dimensionless form, that the mean pressure is hydrostatically
distributed.
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Furthermore, σ0 represents the ratio between the time required for the flow to travel
along a reach of length B and the tidal period. With typical values of B of the order
of tens or hundreds of metres and V0 about 1 m s−1, the value of σ0 for a semidiurnal
tide (ω = 1.4 × 10−4 s−1) falls roughly in the range 10−3–10−2. This suggests that
inertial effects play a negligible role in flow processes occurring at the spatial scale
of bars. Also note that in (2.3)–(2.6) we have neglected the effect of Coriolis forces,
which turn out to scale with the inverse of the Rossby number V0/(ΩB), where Ω is
the angular frequency associated with Earth’s rotation. Since Ω is comparable with
ω, it turns out that the effect of Coriolis acceleration is as small as inertial effects in
tidal channels.

The boundary conditions to be associated with equations (2.3)–(2.6) impose no slip
at the bed, vanishing stresses at the free surface, and the requirement that the free
surface must be a material surface:

U = V = W = 0 (z = H − D + zoD), (2.9a, b)(
σ0

∂

∂t
+U

∂

∂x
+ V

∂

∂y

)
H −W = 0 (z = H), (2.10)

P = 0 (z = H), (2.11)

∂V

∂z
= 0 (z = H), (2.12)

∂U

∂z
= 0 (z = H), (2.13)

with z0 the dimensionless value of the conventional reference level for no slip under
uniform flow conditions. Notice that, in writing (2.11)–(2.13), we have taken into
account the nearly horizontal character of the free surface.

At the sidewalls we ignore the boundary layers and simply impose the flow to be
tangential to the boundaries, hence

V = 0 (y = ±1). (2.14)

A closure assumption for the eddy viscosity νT may be obtained assuming that the
slow time variation of the flow field leads to a quasi-steady sequence of equilibrium
states. Hence we write

νT =N(Z)u∗D, (2.15)

whereN(Z) is the distribution of eddy viscosity at equilibrium, with Z the normalized
vertical coordinate:

Z =
z − (H − D)

D
. (2.16)

Moreover u∗ is a characteristic instantaneous value of a dimensionless friction velocity
defined as

√|τ ∗|/(%V 2
0Cf0), with τ ∗ the local and instantaneous component of the

stress vector acting on the bottom in the tangential direction.
Mass balance of sediment transported as suspended load leads to a convection–

diffusion equation for the volumetric sediment concentration C:

LC− βWs

∂C
∂z

= β
√
Cf0

∂

∂z

[
ψ
∂C
∂z

]
, (2.17)
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with Ws the dimensionless value of the particle fall velocity defined in the form

Ws =
W ∗

s

V0

. (2.18)

The typical size of sediments in tidal environments ranges about 0.1 mm, corre-
sponding to a dimensional value of the settling speed of about 1 cm s−1. Hence its
dimensionless value (2.18) is about 10−2.

We point out that (2.17) is based on the assumption that the size and concentration
of sediment particles are small enough for sediment to play an essentially passive role,
being transported by the fluid except for the tendency of particles to settle (Lumley
1976).

The boundary conditions associated with (2.17) impose vanishing sediment flux
at the sidewalls and at the free surface. Furthermore at the bed we impose the
so-called ‘gradient boundary condition’ which essentially consists of an entrainment
assumption whereby the net flux of sediment is assumed to be proportional to the
difference between the actual local instantaneous concentration and the value that
concentration would attain at equilibrium with the local and instantaneous flow
conditions. The proportionality constant, i.e. the entrainment coefficient, is taken as
usual to be equal to the particle velocity normal to the bed. The resulting form of the
boundary conditions reads

∇C · n = 0 (y = ±1), (2.19)

[WskC+
√
Cfoψ∇C] · n = 0 (z = H), (2.20)

[WskCe +
√
Cfoψ∇C] · n = 0 (z = H − D + arD), (2.21)

where ∇ is the dimensionless form of the gradient vector, (1/β∂/∂x, 1/β∂/∂y, ∂/∂z),
k is the unit vector in the z-direction, n is the unit vector in the direction normal
to the surface, Ce is the equilibrium value of bed concentration and ar = a∗r /D∗0 is
the conventional dimensionless value of the reference elevation where the boundary
condition is imposed under uniform conditions. Several empirical expressions for Ce
and ar are available in the literature. They correlate Ce with a dimensionless measure
of bottom stress, in the form of the so-called Shields parameter θ, and with particle
Reynolds number Rp:

θ =
|τ ∗|

(%s − %)gd∗s , Rp =

√
(s− 1)gd∗3s

ν
, (2.22a, b)

where d∗s and %s are diameter and density of sediment particles, s = %s/% and ν is
kinematic viscosity. Typical values of θ in tidal environments may reach peaks up to
1–2.

A closure assumption for the eddy diffusivity ψ is also required. A line of reasoning
similar to that which leads to (2.15) allows us to write

ψ = Ψ (Z)u∗D, (2.23)

where Ψ (Z) is the vertical distribution of eddy diffusivity at equilibrium.
The mathematical problem is finally closed by imposing the continuity equation

for the sediment which governs the development of bottom perturbations. It may be
written in the following form:

σ0

β
CM ∂(H − D)

∂t
+ [Wsk(C− Ce) · n]Z=ar

+ Q0

[
∂Qbx

∂x
+
∂Qby

∂y

]
= 0, (2.24)
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where CM is the packing concentration of the granular bed with value about 0.6,
Qb ≡ (Qbx, Qby) is the bedload vector made dimensionless by means of the classical

Einstein scale and Q0 is the dimensionless parameter [(
√

(s− 1)gd∗3s )/V0B]. Equation
(2.24) requires a closure relationship for Qb that can account for the influence of the
sloping bed on particle trajectories. In fact, it is well known from the fluvial literature
that on a sloping bottom the bedload deviates from the direction of bottom stress
by an amount increasing with the local bed slope. In a linear context, like the one
investigated in the next sections, it is fairly well established (see Kovacs & Parker
1994 and Talmon, Struiksma & van Mierlo 1995) that one may write

Qb = φb

{
τ

|τ | −
r

βθm
∂(H − D)

∂y
j

}
, (2.25)

where j is the unit vector in the y-direction, φb(θ) is the intensity of bedload transport
under equilibrium conditions while r and m are parameters for which various fairly
equivalent values have been found on the basis of experimental observations. We
follow Talmon et al. (1995) and take r = 0.56, m = 1/2.

The effect of longitudinal slope on bedload intensity is accounted for by introducing

a corrected value θ̂c of the critical Shields stress in the form

θ̂c = θc − r1

β

∂(H − D)

∂x
, (2.26)

with r1 empirical constant which is about 0.1.
The system (2.3)–(2.26) forms a closed set of equations which may be solved once

expressions for N(Z), Ψ (Z), Cf0 and φb are known.
It will prove convenient in the following to employ the vertical coordinate Z scaled

by the local flow depth, defined by (2.16). We then write:(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
qt, qx, qy,

1

D

∂

∂Z

)
, (2.27)

having defined the operator qj(j = t, x, y) in the form

qj =
∂

∂j
−
[
Z

D

∂D

∂j
+

1

D

∂(H − D)

∂j

]
∂

∂Z
. (2.28)

The momentum equation (2.5) with the boundary condition (2.11) is then readily
solved to give the hydrostatic distribution for P :

P =
D

F2
(1− Z). (2.29)

Hence

qxP =
∂P

∂x
+

1− Z
D

∂D

∂x

∂P

∂Z
− 1

D

∂H

∂x

∂P

∂Z
=

1

F2

∂H

∂x
(2.30)

and

qyP =
1

F2

∂H

∂y
. (2.31)

The momentum and continuity equations (2.3)–(2.6) are then readily given the fol-
lowing form:

LU = − 1

F2

∂H

∂x
+
β
√
Cf0

D2

∂

∂Z

(
νT
∂U

∂Z

)
, (2.32)
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LV = − 1

F2

∂H

∂y
+
β
√
Cf0

D2

∂

∂Z

(
νT
∂V

∂Z

)
, (2.33)

qxU + qyV +
1

D

∂W

∂Z
= 0, (2.34)

where

L ≡ σ0qt +Uqx + Vqy +
W

D

∂

∂Z
, (2.35)

while the boundary conditions (2.9), (2.10), (2.12) and (2.13) become

U = V = W = 0 (Z = Z0 = z0), (2.36a–c)

(σ0qt +Uqx + Vqy)H −W = 0 (Z = 1), (2.37)

∂U

∂Z
=
∂V

∂Z
= 0 (Z = 1). (2.38a, b)

The convection–diffusion equation (2.17) takes the form

LC− Ws

D

∂C
∂Z

=
β
√
Cf0

D2

∂

∂Z

[
ψ
∂C
∂Z

]
. (2.39)

This equation must be solved with the boundary conditions (2.19)–(2.21) where the
gradient operator ∇ now reads

∇ ≡
(

qx
β
,
qy
β
,

1

D

∂

∂Z

)
. (2.40)

Finally the bottom evolution equation keeps the form (2.24).

3. The local three-dimensional structure of the basic flow and concentration
fields

The basic flow consists essentially of a tidal wave propagating in a long rectangular
channel with slowly varying width. This is a subject which has recently received
considerable attention (see in particular Friedrichs & Aubrey 1994; Lanzoni &
Seminara 1998; and references therein).

However, for the scope of the present analysis, we do not need to know the solution
for tide propagation in the whole channel, as the local flow structure at the spatial
scale of bars is spatially uniform at the leading order of approximation. The interested
reader is referred to the Appendix for a detailed derivation of the basic flow. Here it
suffices to recall that for ‘dissipative’ tidal systems, that is when the dominant balance
in the longitudinal momentum equation involves friction and gravity and local inertia
is negligible, the basic flow (at the scale of bars) admits the simple lowest-order
solution

U = U0 = Ū0(t)F0(Z), (3.1)

H = 1, (3.2)

D = 1, (3.3)

νT = νT0 =N(Z)|Ū0(t)|, (3.4)
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where the function F0 is the solution of the following differential problem:

d

dZ

[
N(Z)

dF0

dZ

]
= −√Cf0, (3.5)

F0 = 0 (Z = Z0), (3.6)

dF0

dZ
= 0 (Z = 1). (3.7)

Also note that the basic free-surface elevation and flow depth take the form (3.2)
and (3.3) having taken the reference level at the average bottom and the reference
flow depth as the average flow depth in the reach under consideration. Using Dean’s
(1974) structure for N(Z)

N(Z) =
kZ(1− Z)

1 + 2AZ2 + 3BZ3
, A = 1.84, B = −1.56, (3.8a–c)

with k the von Kármán constant, we can integrate (3.5), with the boundary conditions
(3.6)–(3.7), to obtain

F0(Z) =

√
Cf0

k

[
ln
Z

Z0

+ AZ2 + BZ3

]
(3.9)

where

Z0 = exp

(
− k√

Cf0

− 0.777

)
. (3.10)

Notice that the reference friction coefficient Cf0 refers to the instant when Ū0 equals 1.
It is convenient to point out at this stage that the self-similar structure of the

solution for U0 is only valid provided local inertia in the momentum equation is
negligible at the leading order of approximation. Otherwise the vertical distribution
F0 is itself time-dependent. Local inertia could be incorporated in the framework of the
present analysis. However, as the non-self-similarity of the basic velocity distribution
observed in real estuaries is a fairly weak effect, the essential features of bar formation
in tidal channels are not likely to be significantly affected by such additional effect.
However, a complete analysis will be required in order to conclusively substantiate
that statement.

Also note that in principle any time dependence of the basic flow can be incor-
porated in the analysis through the function Ū0(t). In particular one could readily
account for the effect of overtides. For the sake of simplicity the stability analysis of
the next section will be developed for the simple case

Ū0 = cos t. (3.11)

At the lowest order of approximation considered herein the structure of the basic
concentration field C0 is readily obtained from (2.39) and (2.19)–(2.21). Recalling
(2.23) we find

ψ = ψ0 = Ψ (Z)|Ū0(t)|. (3.12)

Hence, the following differential problem for C0 is obtained:[
∂

∂Z

(
Ψ (Z)

∂

∂Z

)
+ G(t)

∂

∂Z

]
C0 = 0, (3.13)
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Ψ (Z)
∂C0

∂Z
+ G(t)Ce0 = 0 (Z = ar), (3.14)

Ψ (Z)
∂C0

∂Z
+ G(t)C0 = 0 (Z = 1), (3.15)

where Ce0 = Ce|θ=θ0
, with

θ0 = Ū2
0

Cf0V
2
0

(s− 1)gd∗s
(3.16)

and

G(t) =
Ws

|Ū0|√Cf0

. (3.17)

The solution of this system is obtained in the form

C0 = Ce0 exp

[
−
∫ Z

ar

G(t)

Ψ (Z)
dZ

]
(3.18)

and describes a Rouse-type distribution parametrically dependent on time.

4. Formation of bars: local theory
We now investigate the growth of perturbations of the flow and concentration

fields associated with bottom perturbations of the bar type. As already pointed out
in the previous section, the basic flow, the stability of which we wish to investigate, is
slowly varying in the longitudinal direction due to the propagation of the tidal wave
(and possibly to channel convergence). However, at the leading order examined in
the present investigation we limit ourselves to a ‘local’ analysis, i.e. we neglect the
effects of the ‘slow’ spatial variations of the basic flow on bar growth and we focus
our attention on a reach of the estuary of length scaling on channel width.

Let us then consider a perturbed flow configuration of the form

(U,W,H,D, νT ) = (U0, 0, 1, 1, νT0) + ζ(u0, w0,F2h0, d0, νT0n0)ESm + c.c.+ O(ζ2),

(4.1)

V = ζ[v0ECm] + c.c.+ O(ζ2), (4.2)

where

Sm = sin
(
m 1

2
πy
)
, Cm = cos

(
m 1

2
πy
)
, (m odd)

Sm = cos
(
m 1

2
πy
)
, Cm = sin

(
m 1

2
πy
)
, (m even)

}
(m = 1, 2, . . .) (4.3a–d )

E = exp (iλx), (4.3e)

where ζ is an infinitesimal parameter and c.c. denotes the complex conjugate of a
complex number.

Furthermore from the dimensionless definition of νT we readily find

n0 = d0 +

(
∂u0/∂Z

∂U0/∂Z

)
Z=Z0

. (4.4)

We then substitute from (4.1)–(4.4) into (2.32)–(2.38) and equate terms O(ζ) to derive
a sequence of differential problems for v0, w0 and u0.
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The amplitude of the perturbation of the transverse component of velocity is the
solution of the following problem:

L1v0 =
µ

|Ū0|h0, (4.5)

v0 = 0 (Z = Z0), (4.6)

∂v0

∂Z
= 0 (Z = 1), (4.7)

where L1 is the differential operator

L1 ≡ ∂

∂Z

(
N ∂

∂Z

)
− ΛIF0 (4.8)

and

Λ =
iλ

β
√
Cf0

, µ =
M

β
√
Cf0

, I =
Ū0

|Ū0| , M = (−1)m−1m 1
2
π. (4.9a–d )

The system (4.5)–(4.9) is readily solved in the form

v0 =
h0

|Ū0| [v2(Z) + cV v1(Z)], cV = −
(
v′2
v′1

)
Z=1

, (4.10a, b)

where a prime denotes the vertical derivative d/dZ , and the functions v1 and v2 are
solutions of the initial value problems

L1vj = bj (j = 1, 2), (4.11)

vj = 0 (Z = Z0) (j = 1, 2), (4.12)

v′j = 1 (Z = Z0) (j = 1, 2), (4.13)

with

b1 = 0, b2 = µ, (4.14)

and L1 is the differential operator obtained from (4.8) on replacing ∂/∂Z by d/dZ .
These problems are solved numerically.

Once v0 is known, flow continuity (2.34) allows us to express w0 in terms of u0 as

w0 = Mg − iλf + iλŪ0

[
F0(Z − 1)d0 +F2F0h0 − d0

∫ Z

Z0

F0(τ)dτ

]
, (4.15)

where

g =

∫ Z

Z0

v0(τ)dτ, f =

∫ Z

Z0

u0(τ)dτ. (4.16a, b)

Finally, employing all the above solutions, one derives the following differential
problem for f:

L2f =
Λ

|Ū0|h0 −
√
Cf0Ū0d0 − Λ|Ū0|d0F

′
0

∫ Z

Z0

F0(τ)dτ+ IµF ′0g, (4.17)

f =
∂f

∂Z
= 0 (Z = Z0), (4.18a, b)

∂2f

∂Z2
= 0 (Z = 1), (4.19)
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where L2 is the following differential operator:

L2 ≡ ∂

∂Z

(
N ∂2

∂Z2

)
− ΛF0I

∂

∂Z
+ ΛF ′0I −

[
N ∂2

∂Z2

]
Z0

. (4.20)

This problem is readily solved in the form

u0 =
h0

|Ū0| [f
′
1 + cuhf

′
0] + |Ū0|d0[f

′
2 + cudf

′
0], (4.21a)

cuh = −
(
f′′1
f′′0

)
Z=1

, cud = −
(
f′′2
f′′0

)
Z=1

, (4.21b, c)

where the functions fj(j = 0, 1, 2) are solutions of the following initial value problems:

L2fj = aj (j = 0, 1, 2), (4.22)

fj = f′j = 0 (Z = Z0, j = 0, 1, 2), (4.23)

f′′j = 1 (Z = Z0, j = 0, 1, 2), (4.24)

with

a0 = 0, a1 = Λ+ µF ′0I(g2 + cvg1), a2 = −
[
ΛF ′0

∫ Z

Z0

F0(τ)dτ+ I
√
Cf0

]
,

(4.25a–c)

and L2 is given by (4.20) with ∂/∂Z replaced by d/dZ . Finally at O(ζ) the kinematic
boundary condition at the free surface (2.37) reads

w0 = iλU0h0F2 (Z = 1). (4.26)

Using (4.10a), (4.15), (4.16) and (4.21a) expression (4.26) establishes the following
relationship between h0 and d0:

h0 = h̄(t)Ū0|Ū0|d0 (4.27)

where

h̄(t) =
iλ[1 + I(f2 + cudf0)]Z=1

[M(g2 + cvg1)− iλ(f1 + cuhf0)]Z=1

. (4.28)

Using (4.27)–(4.28) the whole solution for u0, v0, w0 becomes simply proportional to
the amplitude of the perturbation of flow depth d0:

v0 = v̂(Z)Ū0(t)d0, u0 = û(Z)Ū0(t)d0, w0 = ŵ(Z)Ū0(t)d0, (4.29a–c)

where v̂, û and ŵ are readily obtained from (4.10a), (4.15) and (4.21a). Note that the
above solution, being proportional to Ū0(t), varies smoothly in a neighbourhood of
the instant of flow reversal.

Let us now proceed to evaluate the perturbation of the concentration field. Expand

(C, ψ) = (C0, ψ0) + ζ [(C10, ψ0p0)ESm + c.c.] + O(ζ2), (4.30)

with ζ infinitesimal. We note that the perturbation of eddy diffusivity leads to a
relationship for p0 identical with that obtained for n0 (see (4.4)). Substituting from
(4.30) into (2.39) and equating terms O(ζ), after some algebraic manipulations we
eventually find

L3C10 = Ω(Z, t)d0, (4.31)
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where L3 is the following differential operator:

L3 ≡ ∂

∂Z

[
Ψ

∂

∂Z

]
− ΛIF0 + G(t)

∂

∂Z
, (4.32)

with G given by (3.17) and Ψ defined in (2.23).
Moreover, neglecting terms O(F2), the function Ω(Z, t) reads

Ω =

{
ŵI

β
√
Cf0

+ ΛIF0(1− Z) + G(t)Γ

}
∂C0

∂Z
, (4.33)

where

Γ =

(
û′

F ′0

)
Z=Z0

. (4.34)

The condition of vanishing flux at the free surface (2.20) at O(ζ) is found to be:[
Ψ
∂C10

∂Z
+ G(t)C10

]
Z=1

= Ω1d0, (4.35)

where

Ω1 = GΓC0|Z=1. (4.36)

Similarly at the conventional reference level Z = ar the gradient boundary condition
(2.21) at O(ζ) gives [

Ψ
∂C10

∂Z

]
Z=ar

= Ω0d0, (4.37)

having expanded the Shields stress in the form

θ = θ0

[
1 + ζ(2Γd0ESm + c.c.) + O(ζ2)

]
(4.38)

and set

Ω0 = G

[
−2θ0

∂Ce
∂θ

∣∣∣∣
θ0 ,1

+ Ce0
]
Γ + IF0|Z=arΛCe0 + I

ŵ|Z=ar

β
√
Cf0

Ce0 − G ∂Ce
∂D

∣∣∣∣
θ0 ,1

. (4.39)

The differential system (4.31)–(4.32), with the boundary conditions (4.35) and (4.37),
is readily solved at each time in the form

C10 = Ĉd0, Ĉ = ck1 + k2, (4.40a, b)

where k1, k2 are solutions of the following initial value problems:

L3kj = rj (j = 1, 2), (4.41a)

Ψk′j = ej (Z = ar) (j = 1, 2), (4.41b)

kj = `j (Z = ar) (j = 1, 2), (4.41c)

with

r1 = 0, e1 = 0, `1 = 1, r2 = Ω, e2 = Ω0, `2 = 0. (4.42a–f )

The constant c is

c =
Ω1 − [Ψk′2 + Gk2]Z=1

[Ψk′1 + Gk1]Z=1

(4.43)

and L3 is given by (4.32) with ∂/∂Z replaced by d/dZ . The growth of perturbations
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is eventually ascertained by solving the linearized form of the bottom evolution
equation (2.24) which is found as

d0,t = D(t)d0, D(t) = D0(t) +D1(t), (4.44a, b)

where

D1(t) =
βWs

σ0CM

[
−Ū0Ĉ|Z=ar + 2θ0Γ

∂Ce
∂θ

∣∣∣∣
θ0 ,1

+
∂Ce
∂D

∣∣∣∣
θ0 ,1

]
, (4.45)

D0(t) =
φb0Q0

σ0CM

{
2iλΓIφθ −MI

(
v̂′

F ′0

)
Z=Z0

− rM2

β
√
θ0

− λ2r1

βθ0

φθ

}
, (4.46)

having set

φb0 = φb(θ0), (4.47)

φθ =
θ0

φb0

dφb

dθ

∣∣∣∣
θ0

. (4.48)

The marginal stability conditions are then obtained by setting∫ t+2π

t

D(τ)dτ = 0. (4.49)

5. Results and discussion
In order to solve for the basic state and the perturbation fields we first need to

provide convenient closure relationships for Ce, ar, Ψ (Z), φb and Cf0.
Calculations were performed employing Van Rijn’s (1984) closures for Ce and ar:

Ce = 0.015
d∗s
a∗r

(
θ′

θc
− 1

)1.5

R−0.2
p , (5.1a)

a∗r = εe (εe > 0.01D∗), (5.1b)

a∗r = 0.01D∗ (εe < 0.01D∗), (5.1c)

where θ′ is the effective Shields stress acting on bedload particles, which is expressed in
terms of the total Shields parameter θ using Engelund & Fredsøe’s (1982) relationship:

θ′ = 0.06 + 0.3θ3/2. (5.2)

Furthermore, εe is an effective roughness accounting for the effect of dunes, for which
Van Rijn (1984) gives an expression which ultimately relates εe to bed shear stress,
and θc is the critical Shields stress for sediment motion evaluated using Brownlie’s
(1981) relationship:

θc = 0.22R−0.6
p + 0.06 exp (−17.77R−0.6

p ). (5.3)

The eddy diffusivity is given McTigue’s (1981) form

Ψ = 0.35Z (Z < 0.314),

Ψ = 0.11 (0.314 6 Z 6 1).

}
(5.4)

The intensity of bedload transport was evaluated using Meyer’s-Peter & Muller’s
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Figure 4. A typical vertical distribution of the real and imaginary parts of the lateral component
of the perturbation velocity v0 is plotted at two dimensionless times. Values of the relevant
dimensionless parameters are: β = 10, ds = 2× 10−5, Rp = 4, λ = 0.2, θ̄0 = 1, d0 = 1.

classical relationship:

φb = 8(θ′ − θ̂c)3/2 (5.5)

with θ̂c defined in (2.26).
Finally Cf0 was calculated using Engelund & Hansen’s (1967) formula, as modified

by Engelund & Fredsøe (1982), which is able to account for the dissipative effect
of dune-covered beds. Note that such an approach is based on the assumption that
the dune pattern responds instantaneously to the forcing effect of the basic velocity
field. This is only approximately true, as the actual response is qualitatively known to
exhibit a small delay.

The simplest temporal distribution (3.11) of the cross-sectionally averaged velocity
Ū0(t), a harmonic tide, was assumed and the vertical distribution of the longitudinal
component of the basic velocity field was then evaluated by means of (3.9).

We then proceeded to calculate the basic concentration field with the help of (3.16)
and (3.17). The fall velocity W ∗

s was evaluated using the following relationship which
fits the experimental curve of Parker (1978):

log10

(
W ∗

s√
(s− 1)gd∗s

)
= −1.181 + 0.966πp − 0.1804π2

p + 0.003746π3
p + 0.0008782π4

p,

(5.6)

with πp = log10 Rp.
The next step was to calculate the perturbation field. In particular we have solved

for v0 and u0 using (4.11)–(4.14) and (4.22)–(4.25), respectively. The vertical component
of the perturbation velocity w0 was obtained by (4.15) and we finally calculated the
quantity h̄ as a function of time by means of (4.28). Figure 4 shows an example of
the vertical distribution of the lateral component of the perturbation velocity v0, for
given values of the relevant dimensionless parameters and with d0 = 1 (see (4.29a).
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Figure 5. A typical vertical distribution of the real and imaginary parts of the longitudinal
component of the perturbation velocity u0 is plotted at two dimensionless times. Values of the
relevant dimensionless parameters are: β = 10, ds = 2× 10−5, Rp = 4, λ = 0.2, θ̄0 = 1, d0 = 1.

Note that the solution for v0 satisfies the condition

v0(Z; t) = ṽ0(Z; t+ π), (5.7)

where a tilde denotes the complex conjugate. Hence the vertical distribution of the
lateral component of the perturbation velocity is insensitive to the sign of the basic
velocity, as one expects on physical grounds given the symmetry of the problem
within the present scheme. Figure 5 shows an example of the vertical distribution of
the longitudinal component of the perturbation velocity u0(Z; t) at different times.

The next step was to obtain the perturbation of the concentration distribution C10

by means of (4.40)–(4.43): an example of the vertical distribution of C10 at different
times is reported in figure 6. Note that all the above initial value problems were solved
numerically using a Runge–Kutta scheme of fourth order.

Once the perturbation field was known, we evaluated the function D(t) and its
integral over a cycle, i.e. the complex bar growth rate. For given values of the peak
basic Shields stress θ̄0, particle Reynolds number Rp and relative roughness ds = d∗s /D∗0,
searching for the marginal stability conditions, characterized by vanishing value of
the real part of the complex growth rate, allowed us to construct neutral stability
curves in the plane (λ, β) for each transverse mode m.

The major distinct effect of the uniform geometry of the channel and of the
periodicity of the basic flow with vanishing mean is to let the imaginary part of D(t)
be such that its integral over a tidal cycle is invariably found to vanish. This is not
surprising. In fact the physical implication of this result is that, unlike river bars,
tidal bars do not exhibit a net migration over a tidal cycle. Note that this does not
imply that bars do not migrate but, rather, that they migrate alternately forward and
backward in a symmetric fashion. In other words tidal bars are not instantaneously
steady features but they are steady features in the mean.

In figure 7 we have plotted the instantaneous value of the growth rate through
a quarter of a tidal cycle for four different values of the bar wavenumber. This
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Figure 6. A typical vertical distribution of the real and imaginary parts of the perturbation
of sediment concentration is plotted at two different times. Values of the relevant dimensionless
parameters are: β = 10, λ = 0.5, ds = 2× 10−5, Rp = 4, λ = 0.2, θ̄0 = 1, d0 = 1.
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Figure 7. The temporal distribution of the instantaneous value of the bar growth rate ωb is plotted
for different values of the bar wavenumber λ. Values of the relevant parameters are: β = 10, Rp = 4,

ds = 2× 10−5, θ̄0 = 1.

figure clarifies how bar growth arises from an integrated effect of the bar growth rate
throughout the tidal cycle.

The marginal stability curve of the first mode (alternate bar mode) is given in
figure 8. Note its close similarity with the corresponding curve obtained by Colombini
et al. (1987) in the steady (river) case. Figure 8 shows that increasing the Shields stress
gives rise to interesting additional features of the problem. A major effect displayed
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Figure 8. Marginal stability curves for different values of peak Shields stress
(Rp = 4, ds = 0.00002).

by the present results is the destabilization associated with large values of the Shields
stress, displayed by the decrease of the critical value of the width to depth ratio.
Note that this effect is mainly due to the decreasing stabilizing role played by gravity,
but its effect is somewhat counteracted by suspended load, which plays a stabilizing
role at sufficiently large wavenumbers. This finding agrees with results obtained in
the steady fluvial case (Tubino, Repetto & Zolezzi 1999). Let us analyse this effect in
physical terms.

Consider first the case of negligible suspended load. The picture, here, is quite
similar to the steady case discussed in detail by Colombini et al. (1987). The growth
rate has two contributions. One is proportional to − sin δ1, with δ1 the phase lag
between the perturbation of the longitudinal component of bedload flux and the
perturbation of bottom elevation, and is linearly proportional to the amplitude of
the longitudinal component of the perturbation of the bedload flux vector, which
is an increasing function of Shields stress. This contribution is quite similar to the
corresponding contribution found in the analysis of dune formation (Engelund &
Fredsoe 1982) and is invariably destabilizing, though with decreasing rate as bar
wavenumber λ tends either to zero or to infinity, since δ1 is found to vary from π
to 2π as λ varies in the range (0,∞). Hence, this contribution to the growth rate
increases, for given λ, as Shields stress increases and exhibits a peak for some finite
value of λ for given Shields stress. Moreover it is found to be only weakly dependent
on the aspect ratio of the channel.

The second contribution to the growth rate is proportional to cos δ2, with δ2 the
phase lag between the perturbation of the transverse component of bedload flux
and the perturbation of bottom elevation. The proportionality constant is linearly
proportional to the parameter m describing the order of the transverse mode (see
(4.3a–d)) and to the amplitude of the transverse component of the perturbation of
the bedload flux vector. Due to the effect of gravity this contribution is invariably
stabilizing. In fact δ2 is found to vary from π to π/2 as λ varies in the range (0,∞);
however, the intensity of this stabilizing effect is a decreasing function of Shields
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stress and has a dominant contribution which is inversely proportional to the width
ratio β, as suggested by (2.25).

As a result of the above behaviour, in the absence of suspended load, the growth
rate tends to vanish as λ tends either to zero or to infinity for any value of the Shields
stress and of the width ratio. For low enough values of β the first contribution
never exceeds the second and the basic flat bed keeps stable. If a threshold value
of β is exceeded, an unstable range is detected and a most unstable wavenumber is
selected. On the other hand, as the Shields stress increases, the stabilizing contribution
decreases monotonically: hence, in the mathematical limit for the Shields parameter
tending to infinity, the basic state is unstable for any λ.

The inclusion of suspended load changes the picture in a way similar to that
discussed by Tubino et al. (1999) for the fluvial case. Suspended load essentially
adds a third contribution to the growth rate, which may be written in a form
quite similar to that of the first (destabilizing) contribution, hence proportional
to − sin δ3, with δ3 the phase lag between the perturbation of the longitudinal
component of suspended load flux and the perturbation of bottom elevation. Again,
the coefficient of proportionality is linearly proportional to the amplitude of the
longitudinal component of the perturbation of the suspended load flux vector, which
is also an increasing function of Shields stress. The phase lag δ3 mainly arises from the
effect of longitudinal convection of suspended sediments, hence it depends on the bar
wavenumber λ. It turns out that the contribution of suspended load to the bar growth
rate (which includes a further, minor, effect associated with the transverse component
of suspended load), shifts from positive (destabilizing) to negative (stabilizing) as
λ increases. This finding corresponds to the physical fact that the peak of the
longitudinal component of suspended load shifts from the fourth to the first quadrant
as λ increases. It is then not surprising that, as Shields stress increases and suspended
load becomes dominant relative to bedload, the marginal stability curves shift towards
the vertical axis, while the critical values of both the width ratio and bar wavenumber
decrease.

It is worth noticing that alternative forms of the relationship for the reference
concentration Ce, though affecting quantitatively the bar growth rate, do not seem
to alter qualitatively the picture outlined above: this is shown in figure 9 where a
comparison is reported between marginal stability curves obtained through different
closures for Ce.

In figure 10 we have plotted the bar wavenumber characterized by the maximum
growth rate λmax for different values of the peak Shields stress and given values of
the particle Reynolds number Rp and relative roughness.

It is a tedious exercise left to reader to show that the condition (4.49) is invariant
with respect to the order m of the transverse mode once we set the following
transformation:

βcm = mβc1, λcm = mλc1, (5.8a, b)

where βcm(m = 1, 2, . . .) is the critical value of the width to depth ratio characteristic of
mode m and λcm is the corresponding critical wavenumber. Note that (5.8) imply that
at large values of the Shields stress, when βc1 tends to vanish, all the modes tend to be
simultaneously excited, though with unequal growth rate. This suggests that the bar
pattern actually observed under these conditions may arise from some non-obvious
nonlinear competition among different modes, which may only be described by means
of a fully nonlinear analysis.

Various effects ignored in the present investigation will deserve attention in the
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Figure 10. The wavenumber λmax characterized by maximum growth is plotted versus the width
ratio for different values of the peak Shields stress (Rp = 4, ds = 0.00002).

future. We have ignored the slow spatial variation of the basic flow, arising from
the propagation of the tidal wave in the slowly converging channel. This additional
feature may be accounted for by employing a WKBJ type of asymptotic analysis.

Furthermore in the present analysis we have assumed the local inertia to be
negligible at leading order: as a result the basic flow had a self-similar structure.
Removing this hypothesis implies that the vertical distributions of basic flow and
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concentration fields vary in time throughout the tidal cycle. This in turn affects the
perturbation field and may alter the bar instability process.

Finally, let us clarify the relationship between our work and the work of Schuttelaars
& de Swart (1999) (hereinafter referred to as SdS); they differ in many respects. First,
SdS investigate the formation of bars in tidal channels of length assumed to be small
with respect to the tidal wavelength and consider bed perturbations scaling on the
finite channel length. They find that the bottom elevation of the basic state increases
linearly landward, unlike the present case where, at the scale of bars, bottom elevation
is constant at leading order in the basic state. As a result, whereas in the present
solution the longitudinal wavenumber may take any real positive value, in SdS a
discrete number of longitudinal modes is associated with the finite length of the
channel. Furthermore, the spatial uniformity of our basic state (at the scale of bars)
leads to a Fourier structure of perturbations, which is not the case in SdS. Moreover,
we do not need to fit end conditions in the present work as the bar wavelength
scales with channel width and the bar structure is slowly varying in the longitudinal
direction, the channel length being much larger than the bar wavelength.

We feel that, in principle, by letting the channel length tend to infinity in SdS’s
analysis, the most unstable mode should tend to that predicted in the present work,
just like the structure of Taylor vortices between cylinders of finite length tends to
the classical uniform distribution as the length becomes large enough. On the other
hand, in practice, the above comparison cannot be pursued as the model employed
by SdS is significantly different from ours in several aspects.

We have employed a three-dimensional model of both the flow and concentration
fields which has allowed us to predict the phase lag of suspended load relative to the
bottom perturbation, leading to bar stabilization in the high-wavenumber range. On
the other hand SdS employ a two-dimensional model unable to describe that effect.

In SdS advective terms are neglected in the momentum equations, an approximation
which is said to be “.... the consequence of the assumption of a short embayment
....”. Owing to such approximation the validity of SdS’s model cannot be extended to
cover modes of wavelength of the order of a few channel widths. Note that the most
unstable longitudinal mode in figure 13 of SdS is characterized by a value of `n of
about 70. In our notation `n is nπL/B, hence modes higher than the second would
correspond to a ratio of channel length L to channel width B smaller than 10.

Various other approximations, like the linearization of the frictional term extended
to the range where the flow depth tends to vanish and the adoption of the boundary
condition of inerodible bed at the bay entrance, make any attempt to compare results
of SdS with the present results not feasible.

This work has been developed in the framework of the National Project cofunded by
MURST and Universities of Genova and Trento ‘Morfodinamica fluviale e costiera’.
A preliminary version of the present work was presented at PECS ’96 (Seminara &
Tubino 1998).

Appendix. The basic flow
In order to derive the local structure of the basic flow we define a suitable

dimensionless longitudinal coordinate ξ

ξ = γx, (A 1)
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where

γ ≡ B

L
� 1, (A 2)

and L is the spatial scale of the tidal wave. Note that we ignore any further slow
spatial dependence associated with channel convergence and restrict ourselves to the
leading-order representation of basic flow; hence we ignore the lateral component of
the basic velocity field. Since

∂

∂x
= γ

∂

∂ξ
, (A 3)

the balance (2.34) implies that

W ∼ O(γ). (A 4)

The appropriate choice for the velocity scale V0 then arises from the dominant balance
in (2.37). Since

σ0

U

∂H/∂t

∂H/∂x
∼ O

(
σ0

γ

)
=
ωL

V0

(A 5)

and the flow speed V0 is typically much smaller than the wave speed (ωL), it follows
that the terms balancing in (2.37) are W and σ0∂H/∂t. Hence we require that

σ0

a0

D∗0
= γ. (A 6)

Recalling (2.8a), the condition (A 6) leads to the following expression for V0:

V0 = ωL. (A 7)

Based on (A 4) we then rescale U and W in the form

U = U0, W = γW0, (A 8a, b)

where U0 and W0 are functions of ξ, t and Z , and we rewrite the governing equations
(2.32)–(2.34) in a form appropriate for the analysis of the basic flow:

1

D

∂W0

∂Z
= −qξU0, (A 9)

L0U0 = − γ

F2

∂H

∂ξ
+
β
√
Cf0

D2

∂

∂Z

(
νT
∂U0

∂Z

)
, (A 10)

where D is an O(1) quantity and L0 is the following linear partial differential operator:

L0 ≡ γ

ε
qt + γU0qξ + γ

W0

D

∂

∂Z
. (A 11)

Similarly the boundary conditions (2.36)–(2.38) take the following form:

U0 = W0 = 0 (Z = Z0), (A 12a, b)

∂U0

∂Z
= 0 (Z = 1), (A 13)

1

ε

∂H

∂t
+U0

∂H

∂ξ
−W0 = 0 (Z = 1). (A 14)

We now assume that the dominant balance in the longitudinal momentum equation
(A 10) involves friction and gravity. Since perturbations of free-surface elevation
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relative to the still water level are O(ε), we set

γε

F2
= βCf0. (A 15)

The conditions (A 6), (A 15) determine the velocity scale V0 in the form

V0 =

(
ga2

0ω

Cf0

)1/3

. (A 16)

The length scale L is then readily obtained from (A 7). We also assume that local
inertia is negligible at leading order. Comparison between the orders of magnitude
of gravity and local inertia in (A 10) shows that this assumption is valid provided the
following condition is satisfied:

F2 � ε2. (A 17)

As discussed by Lanzoni & Seminara (1998) (A 17) is approximately satisfied by some
estuaries. Under the above hypotheses the system (A 9–A 10) admits the simplest
lowest-order solution:

U0 = Ū0(t, ξ)F0(Z), (A 18)

W0 = Ū0(t, ξ)G0(Z), (A 19)

(H,D) = [H0, D0(ξ)] + ε [H1(ξ, t), D1(ξ, t)] , (A 20)

νT =N(Z)|Ū0(ξ, t)|D0. (A 21)

Substituting from (A 18)–(A 21) into (A 10), where inertial terms are neglected, we
obtain

Ū0|Ū0| d

dZ

[
N(Z)

dF0

dZ

]
=

(
γε

F2β
√
Cf0

)
D0

∂H1

∂ξ
=
√
Cf0D0

∂H1

∂ξ
. (A 22)

Recalling the boundary condition (A 13), equation (A 22) can be integrated once to
give

−Ū0|Ū0|
(
N(Z)

dF0

dZ

)∣∣∣∣
Z0

= D0

∂H1

∂ξ

√
Cf0. (A 23)

Recalling that, by definition, (N(Z)dF0/dZ)|Z0
is equal to

√
Cf0, from (A 23) we find:

D0

∂H1

∂ξ
+ Ū0|Ū0| = 0. (A 24)

This equation is the lowest-order approximation of the one-dimensional formulation
of the momentum equation arising in the present framework.

The continuity equation (2.34) at lowest order reads

∂U0

∂ξ
+

(1− Z)

D0

∂D0

∂ξ

∂U0

∂Z
+

1

D0

∂W0

∂Z
= 0, (A 25)

which may be integrated at once, with the boundary condition (A12b), to give

W0|Z=1 +
∂

∂ξ
(Ū0D0) = 0. (A 26)

The quantity W0|Z=1 is obtained from the lowest-order approximation of the boundary
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condition (A 14) and is equal to ∂H1/∂t; hence (A 26) reduces to the classical one-
dimensional form of the continuity equation

∂H1

∂t
+

∂

∂ξ
(Ū0D0) = 0. (A 27)

The vertical structure of W0, i.e. the function G0(Z), is then obtained by integrating
(A 25).

The system of equations (A 24), (A 27) can be readily solved (Lanzoni & Seminara
1998) in the fully nonlinear case. Note however that at the lowest order of approx-
imation the basic flow ‘felt’ by bars is spatially uniform, i.e. purely time dependent.
More precisely the quantity H1 does not enter the analysis, and we may choose the
local average flow depth as reference depth to set D0 = 1 and expand:

Ū0 = Ū0(t)[1 + O(γ)]. (A 28)

Finally, using (2.24), one can show that, at leading order, bottom elevation under-
goes periodic oscillations around a flat equilibrium state with dimensionless ampli-
tudes of order (W ∗

s C/ωD∗0) which may attain values of about 10−4, small enough to
be safely ignored.
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